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Abstract—RSA cryptosystem is the most popular public
key cryptosystem which provides both secrecy and digital
signatures. Due to RSA’s popularity, many attacks on it have
been developed. In this paper, we consider experimentally
attacks on low private exponent RSA and find that: (i) lattice
attack using Gauss lattice reduction algorithm is more effective
than Wiener attack, and (ii) it is not always to recover
decryption exponent even if its bit-length is less than one-
quarter bit-length of the modulus. The results also raise an
open question on the conditions to recover the RSA private
key from public key.

Keywords-RSA cryptanalysis; Wiener attack; lattice attack

I. INTRODUCTION

RSA cryptosystem, named after R. Rivest, A. Shamir,

and L. Adleman, who invented RSA [15] in 1978, is the

public-key cryptosystem which is used the most widely. It

can be used to provide both secrecy and digital signatures.

Additionally, its security is based on the intractability of the

integer factorization problem.

RSA cryptosystem is described by the modulus N , which

is a product of two large primes, p and q. The integers e
and d are called the encryption exponent and the decryption

exponent respectively. The exponents e and d are interrelated

by the relation ed ≡ 1 (mod ϕ(N)), where ϕ(N) = (p −
1)(q − 1) is called the Euler’s totient function. In a typical

RSA cryptosystem, p and q have the same bit-length and

e < N . Encryption and decryption algorithms are defined

by C = Me (mod N), M = Cd (mod N) respectively for

each plain text M ∈ ZN .

In the encryption/decryption process, RSA cryptosystem

must do numerous power operations, thus the system takes

a relatively great amount of time to process. Therefore, we

want to reduce the decryption time or signature-generation

time, as well as signature-verification time [10], [2]. One

of the ways to reduce the time processing is to use the

decryption exponent with small d. Unfortunately, since 1990,

Wiener [14] showed that if d < N1/4, we can recover d
by using the pair of the modulus N and the encryption

exponent e. Then, in 1999, Boneh and Durfee[9], taking

the advantages of lattice reduction techniques, claimed that

instance of RSA was not secure enough with d < N0.292.

Lattice attacks on RSA was firstly introduced by Copper-

smith at Eurocrypt’96 [11] and then has been developed by

many authors [6], [7]. Gaussian’s lattice reductions or LLL

algorithms can be used to recover the decryption exponent

d in the case of small d. High dimension lattice attacks are

based on LLL algorithm while low dimension lattice attacks

are based on Gaussian lattice reduction algorithm.

In this paper, we consider experimentally two attacks on

RSA in the case of d < N1/4: the low dimension lattice

attack using Gaussian algorithm and Wiener attack based

on continued fraction expansion of e
N with the purpose of

determining which one is more effective. In addition, we

want to point out the values of α ∈ (0, 1) such that in the

case d < αN1/4, we can recover d from the pair (e,N) by

using lattice attack.

II. LATTICE ATTACK AND WIENER ATTACK

A. Lattice attacks

In [1], Phong Q. Nguyen presented a method to recover

the private exponent d based on the solution of the shortest

problem finding for two dimension lattice. Although he

showed that by using two-dimension, d < N1/4, this is only

a heuristic. Suppose that p, q are two primes having the same

bit-length. Since ed ≡ 1 (mod ϕ(N)), there is a k ∈ Z such

that ed = 1 + kϕ(N). Now, we consider 2-rank lattice L
spanned by two vectors u = (e,

√
N) and v = (N, 0), then

L contains vector t = d×u−k×v = (ed−kN, d
√
N). The

norm of ‖t‖ =
√
(ed− kN)2 + (d

√
N)2 ≈ d

√
N , while√

vol(L) = N3/4. Vector t may be the shortest vector if

d
√
N <

√
vol(L) = N3/4. It means that d < N1/4.

For finding t, we apply Gaussian’s lattice reduction al-

gorithm [13] (Algorithm 1) to two vectors u and v. The

algorithm terminates and yields vectors u∗ and v∗, where

‖u∗‖ < ‖v∗‖. It is noted that, vector u∗ is the smallest

non zero vector of lattice L. Gaussian’s lattice reduction

algorithm will terminate in at most
⌈
log1+

√
2
‖u‖
λ2

⌉
+ 3

iterations [12], where λ2 is the second minima of L. If

u∗ = ±t, our prediction is probably correct, and the value
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of the decryption exponent d can be computed, based on the

vector u.

Algorithm 1 Gaussian’s lattice reduction algorithm (u,v)

Input: A basis [u,v]
Output: A Gaussian reduced basis [u∗,v∗]

repeat
if ‖u‖ > ‖v‖ then

swap u and v
end if
μ← 〈u,v〉/‖u‖2
v← v − 
μ�u (where 
x� = �x+ 1

2�)
until ‖u‖ < ‖v‖

B. Wiener attack

In [5], [8], [3], they showed that if p < q < 2p, e < pq
and d < N1/4, we can recover the decryption exponent

d from the public pair (e,N) by using continued fraction

expansion e
N .

Since ed ≡ 1 (mod ϕ(N)), there is a k ∈ Z such that

ed = 1 + kϕ(N). Hence, we have

∣∣∣∣ e

ϕ(N)
− k

d

∣∣∣∣ = 1

dϕ(N)

.

Accordingly we have k
d ≈ e

ϕ(N) . Moreover, the modulus

N is an approximation of ϕ(N). Since then, we have k
d ≈ e

n .

Because of ϕ(N) = N−(p+q−1) and p+q−1 < 3
√
N ,

we have |N − ϕ(N)| < 3
√
N and

∣∣∣∣ eN − k

d

∣∣∣∣ ≤ 3k

d
√
N

<
1

2d2

So k
d is a convergents of the continued fraction expansion

of e
N

Let us define a continued fraction as following

〈q0, q1, · · · , qm〉 = q0 +
1

q1 +
1

q2 +
1

. . . +
1

qm

= f

The continued fraction representation of a positive rational

number is calculated by using the Euclidean algorithm and

is showed in algorithm 2.

To reconstruct fraction f from its continued fraction ex-

pansion, we use algorithm 3 with ni and di being a sequence

of numerators and denominates and gcd(ni, di) = 1 for

i = 1, 2, 3, · · · ,m.

Wiener attack was also represented in [4]. Here, we re-

introduce in the form of pseudo-code (Algorithm 4).

Algorithm 2 Fraction to continued fraction

Input: Numerator a and denominator b
Output: Continued fraction 〈q0, q1, · · · , qm〉
q0 ←

⌊
a
b

⌋
r0 ← a

b − q0
repeat
i← i+ 1
qi ←

⌊
1

ri−1

⌋
ri ← 1

ri−1
− qi

until ri = 0
m← i

Algorithm 3 Continued fraction to fraction

Input: Continued fraction 〈q0, q1, · · · , qm〉
Output: Fraction nm

dm

n0 = q0
d0 = 1
n1 = q0q1 + 1
d1 = q1
for i = 2→ m do
ni ← qini−1 + ni−2

di ← qidi−1 + di−2

end for

III. EXPERIMENTS

As [14], [8] predicted, if p and q are two large primes,

which satisfy p < q < 2p, the decryption exponent d can

be recovered from the public pair (e,N) when d < N1/4.

However, this is only a prediction. It means that there are

many cases in which d < N1/4 and d cannot be recovered

from the public pair (e,N) by both of lattice attack using

Gaussian’s lattice reduction algorithm and Wiener attack

using continued fraction expansion e
N .

In this section, we will experimentally demonstrate the

following two statements:

1) Lattice attack is more effective than Wiener attack in

recovering the private exponent d.

2) There is a coefficient α < 1 such that for all d <
αN1/4, the decryption exponent d is always recovered

from the public pair (N, e).

The experiments are executed with the system of Intel

processors of 2.2 GHz Core 2 Duo with 2 GB Memory.

Gaussian’s lattice reduction algorithm and continued fraction

expansion e
N were implemented by using Shoup’s NTL [16].

All the experiments were executed with the data chosen

randomly.

A. Comparative Lattice attack and Wiener attack

Experimental method as follows: Let i be an iteration

number and execute following algorithm i times.
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Algorithm 4 Wiener attack algorithm

Input: Public key (e,N)
Output: Secret key d
〈q′0, q′1, · · · , q′m〉 ← e

N (using algorithm 2)

for i = 0→ m do
ni

di
← 〈q′0, q′1, · · · , q′i〉 (using algorithm 3)

k
dg ←

{ 〈q′0, q′1, · · · , q′i + 1〉 if i is even

〈q′0, q′1, · · · , q′i〉 if i is odd

ϕ(N)←
⌈
edg
k

⌋
g ← edg mod k
if ϕ(N) = 0 then

increment i and restart the loop

end if
α← pq−(p−1)(q−1)+1

2
β ← α2 − pq
if β is not a square number then

increment i and restart the loop

end if
d← dg/g

end for

• For each iteration step, generate a pair of different

prime (p, q), which have the same 32-bit of length

satisfying p < q < 2p.

• With each pair of generated primes (p, q), choose

all decryption exponent d in the range
(
1, �N1/4�),

and compute the corresponding encryption exponent

e satisfying ed ≡ 1 (mod ϕ(N)). Pair (e,N) is the

public key and d is private key.

After using the public key (e,N) generated as the descrip-

tion above and two algorithms introduced in section II to

compute a private key d′, we check if d′ is exactly the

corresponding private key d, which is generated at the same

time with the public key (e,N)?

In this paper, we run both algorithms to compute d′, with

the value of iteration number i being 500. After each time

running, we count the number of time that d′ = d (denoting

YES), and the number of time that d′ �= d (denoting NO),

executing time in milliseconds (denoting TIME) and the

percentage of d′ = d (YES) over all (denoting Percent of

YES). Table I shows the comparison results between lattice

and Wiener attack. It can be seen clearly that lattice attack is

more effective than Wiener attack, and the running time of

lattice attack is also shorter than the one of Wiener attack.

In this experiment, an interesting phenomenon of lattice

attack is the case of d < αN1/4 with α = 1√
4+2

√
2
≈ 3

8 , the

private key d seems to be always recovered properly. The

question is whether α is exactly 3
8 or α can be greater (as

we affirm in 2 of section III). The next section will answer

this question.

Lattice attack Wiener attack

YES 6030474 905792

NO 2174281 11902990

TIME (ms) 3048521 14518535

Percent of YES (%) 73.49 7.07

Table I
THE COMPARISON BETWEEN LATTICE ATTACK AND WIENER ATTACK

B. Empirical coefficient of α

When α = 1√
4+2

√
2
≈ 3

8 , for each d < αN1/4 the vector

t is always the shortest vector by using Gaussian’s lattice

reduction algorithm.

Indeed, by the previous experiment for lattice attack with

the iteration number i = 500, we always recover the

corresponding private key d when d < αN1/4 if α = 3
8 .

In table II, we can see that in the range 1 < d < � 38N1/4�,
where �x� is an integer satisfying �x� ≤ x < �x� + 1, the

private key d is always recovered, or d′ �= d (NO) is always

0.

Interval of d YES NO

(
1, � 3

8
N1/4�] 3076387 0

Table II
RESULT OF LATTICE ATTACK WITH d < αN1/4 WHERE α = 3

8

Can we enlarge the value of α? And why? To answer

these questions, we tried to do experiments dividing the

interval 3
8 < d < N1/4 into sub-intervals. Firstly, 3

8 <
d < N1/4 is divided into two sub-intervals: � 38N1/4� <
d ≤ � 12N1/4� and � 12N1/4� < d ≤ �N1/4�. Let X =(� 38N1/4�, � 12N1/4�] and Y =

(� 12N1/4�, �N1/4�]. In the

experiment process, we see that the number d′ = d (YES)

of the interval X is more than the one of the interval Y ,

and number d′ �= d (NO) of the interval X is less than the

one of the interval Y . This suggests that the probability for

recovering d in the interval X will be higher than in the

interval Y. Therefore, we continue to divide the interval X
into four sub-intervals X1 =

(� 38N1/4�, � 1332N1/4�], X2 =(� 1332N1/4�, � 7
16N

1/4�], X3 =
(� 7

16N
1/4�, � 1532N1/4�] and

X4 =
(� 1532N1/4�, � 12N1/4�]. Running the attack, we see

that in the sub-interval X1∪X2, the private key d is always

recovered, but starting from the sub-interval X3 ∪ X4, the

private key d is not always recovered, In other words, this

prediction is only a heuristic, reflected in the number of

d′ �= d (NO) being greater than 0 (see table II).

Similarly, with the interval Y , we also divide

into sub-intervals Y1 =
(� 12N1/4�, � 58N1/4�],
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Y2 =
(� 58N1/4�, � 34N1/4�], Y3 =

(� 34N1/4�, � 1316N1/4�],
Y4 =

(� 1316N1/4�, � 78N1/4�] and Y5 =
(� 78N1/4�, �N1/4�].

The experiment results are showed in the table IV. Com-

bining table III with table IV, we see that with 7
16N

1/4 <
d < N1/4, lattice attack cannot recover the private key d, or

in other words, it is only a heuristic. However, the private

key d can still exactly be recovered in many cases.

Interval of d YES NO

(� 3
8
N1/4�, � 13

32
N1/4�] 256431 0

(� 13
32

N1/4�, � 7
16

N1/4�] 256398 0

(� 7
16

N1/4�, � 15
32

N1/4�] 253600 2800

(� 15
32

N1/4�, � 1
2
N1/4�] 237644 18804

Table III
RESULT OF LATTICE ATTACK WITH αN1/4 < d < βN1/4 WHERE

α = 3
8
, β = 1

2

Interval of d YES NO

(� 1
2
N1/4�, � 5

8
N1/4�] 779828 245758

(� 5
8
N1/4�, � 3

4
N1/4�] 563897 461778

(� 3
4
N1/4�, � 13

16
N1/4�] 215882 296901

(� 13
16

N1/4�, � 7
8
N1/4�] 174568 338259

(� 7
8
N1/4�, �N1/4�] 215824 809843

Table IV
RESULT OF LATTICE ATTACK WITH αN1/4 < d < N1/4 WHERE α = 1

2

IV. CONCLUSIONS

In this paper, by doing experiments, we can conclude that

the lattice attack is more effective than the Wiener attack

when being used to recover the private key d from the pair

of public key (e,N).

During the experiment, it is also showed that there is

a coefficient α < 1 such that d < αN1/4 so that we

can always recover the private key d from the pair of

public key (e,N). To be specific, we indicate that with

α = 1√
4+2

√
2
≈ 3

8 , d is always exactly recovered from

t =
(
ed− kN, d

√
N
)

by using Gaussian’s lattice reduction

algorithm. Basing on these results, we want to determine

and prove that coefficient α is correct in theory. Here, when

we enlarge the interval d < 7
16N

1/4, the private key d
is also recovered. In this particular case of the interval
7
16N

1/4 < d < N1/4, recovering the private key d is not

always possible.

An open question to end this paper: what are the needed

and sufficient conditions to recover the private key d by

lattice attack using Gaussian’s lattice reduction algorithm?
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